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Abstract. With the aim of investigating several long-standing issues, e.g. the equilibrium atomic
volumes of the high-temperature δ-phase (fcc) and ε-phase (bcc) of plutonium metal, a first-
principles thermodynamic calculation has been carried out on the basis of (i) accurate calculations
of 0 K total energies with the full-potential linearized augmented-plane-wave method within the
generalized gradient approximation to the exchange–correlational functional and (ii) the newly
developed classical mean-field statistics where both the cold and thermal parts of the Helmholtz
free energy are derived entirely from the 0 K total energy. The calculated results show that at 0 K
the antiferromagnetic states are energy preferable, both for the fcc and for the bcc phases. For
the first time, an ab initio thermodynamic calculation gives calculated atomic volumes for δ-Pu
and ε-Pu: these are, respectively, 24.97 Å3 and 23.82 Å3, which are very comparable with the
corresponding experimental values of 24.89 Å3 and 24.29 Å3.

According to the behaviours of the 5f electrons, the actinide metals can be partitioned into
two main groups where, in the light actinides Th to Np, and in the low-temperature α-phase of
plutonium (Pu), the 5f electrons are delocalized, whereas in the five higher-temperature phases
(β, γ , δ, δ′, and ε) of Pu, and in the heavy actinides from Am on, the 5f electrons are localized
to varying degrees [1]. The magnetism of the actinide metals also exhibits a similar behaviour,
where the light actinides have no magnetic moments and possess temperature-independent
paramagnetic susceptibilities, while the heavy actinides have localized moments and exhibit
Curie–Weiss antiferromagnetic behaviour [2].

Therefore, for understanding the localization and delocalization of 5f electrons, Pu is the
crucial element, where the character of the 5f electrons apparently varies from nearly purely
delocalized in α-Pu, to varying degrees of localization in the elevated-temperature phases.
This complex and intriguing scenario has provided a great challenge for theory as regards
accurately treating the electronic structure of Pu in the last two decades [2–8]. It is often
argued that the correlation effects are important for making predictions regarding Pu and that
the conventional density functional theory (CDFT) is not suitable, and the recent work going
beyond the CDFT by Savrasov and Kotliar [5] does indeed show that the highly anomalous
atomic volume of δ-Pu can be correctly described taking into account a Hubbard U of the
order of 4 eV. However, the recent work by Söderlind and co-workers (see reference [4] and
references therein) demonstrated that the low-temperature phase of α-Pu could be correctly
described using an accurate density functional calculation with the help of thermal expansion.

For the high-temperature phases of Pu, questions seem still to remain in the framework
of the CDFT. With the very simple crystal structures of fcc for δ-Pu (with atomic volume
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∼24.9 Å3) and bcc for ε-Pu (with atomic volume ∼24.3 Å3), it seems that none of the CDFT
calculations can give atomic volumes that could even be greater than 20 Å3. The present work
reports thermodynamic calculations for δ-Pu and ε-Pu made with a combination of our newly
developed classical mean-field potential (MFP) approach [9] and the full-potential linearized
augmented-plane-wave (LAPW) method [10] within the generalized gradient approximation
(GGA) [11] which is an implementation of the CDFT. We demonstrate that the CDFT can
correctly describe δ-Pu and ε-Pu too if the correct magnetic (antiferromagnetic) state is
considered. For the first time, an ab initio thermal calculation within the framework of the
CDFT gives calculated atomic volumes for δ-Pu and ε-Pu: these are, respectively, 24.97 Å3 and
23.82 Å3, which are very comparable with the corresponding experimental values of 24.89 Å3

and 24.29 Å3.
Since we are treating high-temperature issues relating to δ-Pu and ε-Pu, in addition to an

accurate 0 K calculation, a reliable thermodynamic model is needed. In a series of works,
we have developed a parameter-free classical mean-field (CMF) model [9] which, being
fairly simplistic, only utilizes the 0 K isotherm calculated ab initio. By using this model in
conjunction with accurate calculations of the one-particle thermal excitation of the electrons
with one-dimensional numerical integration and simple treatment of the disordered magnetic
entropy, the well-known experimental γ –α isostructural transition, the Hugoniot state (shock-
wave-compressed state), and the 300 K static equation of state (EOS) of metal Ce have been
well described. The CMF model had also been successfully used for calculations of Hugoniot
states and 293 K isotherms for reference metals Al, Cu, Ta, Mo, and W [12].

We first briefly summarize the CMF approach. For a substance, if we can calculate
the Helmholtz free energy as an explicit function of volume and temperature, all other
thermodynamic parameters can be derived. Let us consider a system with a given averaged
atomic volume V and temperature T . The Helmholtz free energy F(V, T ) per ion can be
written as [13]

F(V, T ) = Ec(V ) + Fion(V , T ) + Fel(V , T ) + Fmag(V, T ) (1)

where Ec represents the 0 K total energy, Fion the vibrational free energy of the lattice ion, and
Fel the free energy due to the thermal excitation of electrons. By constructing the mean-field
potential (MFP) g(r, V ) in terms of the 0 K total energy Ec(R) as [9]

g(r, V ) = 1

2
(Ec(R + r) + Ec(R − r) − 2Ec(R)) (2)

where r represents the distance that the lattice ion deviates from its equilibrium position, and
R is the lattice constant with V = R3/4 for fcc crystal and V = R3/2 for bcc crystal, Fion can
be formulated as

Fion(V , T ) = −kBT

(
3

2
ln

mkBT

2πh̄2 + ln vf (V, T )

)
(3)

where

vf (V, T ) = 4π
∫

exp

(
−g(r, V )

kBT

)
r2 dr. (4)

It should be mentioned that under the second-order approximation, the well-known Dugdale
and MacDonald expression [14] for the Grüneisen parameter can be explicitly deduced using
equation (2).

When the electron–phonon interactions are neglected, the electronic contribution to the
free energy is Fel = Eel − T Sel , where the bare electronic entropy Sel takes the form [15]

Sel(V , T ) = −kB

∫
n(ε, V )[f ln f + (1 − f ) ln(1 − f )] dε (5)
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where n(ε, V ) is the electronic density of states (DOS) and f is the Fermi distribution. Using
equation (5), the energy Eel due to the electron excitations can be expressed as

Eel(V , T ) =
∫

n(ε, V )f ε dε −
∫ εF

n(ε, V )ε dε (6)

where εF is the Fermi energy.
We now consider the term Fmag in equation (1). To the best of our knowledge, no

accurate expression exists for the magnetic free energy Fmag . In the previous work [9], by just
considering the magnetic multiplicity, we introduced Fmag as

Fmag(V, T ) = −kBT ln(MS(2L − MS) + 1) (7)

where ln(MS(2L − MS) + 1) is the magnetic entropy, MS is the total spin magnetic moment,
and L is the 4f orbital moment (L = 3). Since Hund’s rule can be expressed in terms of the
total angular moment as J = MS(2L−MS)/2 with integer MS , it is obvious that equation (7)
can be regarded as a generalization of Hund’s rule to the case of a non-integer magnetic state.

To calculate the 0 K total energy Ec(V ), the full-potential LAPW method within the
GGA is employed. Three calculation cases, namely non-magnetic, ferromagnetic, and anti-
ferromagnetic, are considered. To treat the antiferromagnetic fcc case, the method of Zhou
et al [16] has been followed, i.e. a tetragonal lattice unit cell which includes two atoms at
(0, 0, 0) and (1/2, 1/2, 1/2) is used. To treat the antiferromagnetic bcc case, a simple cubic
unit cell with two atoms is used. Constant muffin-tin radii (Rmt ) of 2.50 au are used for
all lattice constants. The plane-wave cut-off Kcut is determined by RmtKcut = 10.0. 8000
k-points in the full zone are used for reciprocal-space integrations. The basis sets include
the semicore 6s and 6p partial waves, and the valence 7s, 7p, 6d, and 5f partial waves. All of
these orbitals are defined within one energy panel. The remaining electrons were considered as
belonging to the core, but their wave functions were relaxed, i.e., recalculated in each iteration.

Our 0 K results show that the antiferromagnetic state is energy preferable to the ferro-
magnetic state, while the ferromagnetic state is energy preferable to the non-magnetic state.
For the non-magnetic fcc Pu, our results are exactly the same as those given by Jones et al [8].
In figure 1 and figure 2 we show for fcc Pu and bcc Pu respectively the calculated 0 K total
energies as functions of lattice constant for the non-magnetic, the antiferromagnetic, and the
ferromagnetic states. Note that the ferromagnetic results are very unusual, as in the case of fcc
Pu the smoothness of the curve is very poor while in the case of bcc Pu there are even double
minima in the curve. Our results are fundamentally different from those of van Ek et al [6],
who stated that the antiferromagnetically ordered forms of δ-Pu were found to be higher in
energy than ferromagnetic δ-Pu. Regarding the magnetism of δ-Pu, there is some debate, as
only Solovyev et al [2] mentioned a surprisingly small experimental moment of about 1 µB ,
whereas all others have said that δ-Pu is non-magnetic. In the following calculations, we only
consider antiferromagnetic states.

Utilizing the 0 K antiferromagnetic total energies while considering antiferromagnetic
disorder due to the high temperature, we have calculated the equilibrium atomic volumes
(Va), the adiabatic bulk moduli (BS), and the volume thermal expansion coefficients (β) for
fcc Pu (computing at 650 K) and bcc Pu (computing at 850 K) with the above-mentioned
thermodynamic calculation scheme. These results are listed in table 1 together with the
experimental data summarized by Wallace [1]. Inspecting table 1, one notes that the calculated
atomic volumes are surprisingly good as compared with the experimental values.

For the bulk moduli, although they give significantly improved results over the previous
calculations the present calculations still give results that are too large relative to those from
the experiment by a factor of 1.8. For the thermal expansion coefficients, our calculations do
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Figure 1. The 0 K total energy for fcc Pu, calculated for the non-magnetic (dashed line), anti-
ferromagnetic (solid line), and ferromagnetic (dot–dashed line) cases, as a function of the lattice
constant. The inset shows the net spin magnetic moments of the magnetic cases.
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Figure 2. The 0 K total energy for bcc Pu, calculated in the non-magnetic (dashed line), anti-
ferromagnetic (solid line), and ferromagnetic (dot–dashed line) cases, as a function of the lattice
constant. The inset shows the net spin magnetic moments of the magnetic cases.

Table 1. The calculated (employing the antiferromagnetic 0 K isotherm) and experimental
[1] equilibrium atomic volume Va (in Å3), adiabatic bulk modulus BS (in GPa), and volume
thermal expansion coefficient β (in units of 10−6 K−1) for elevated-temperature phases of
plutonium, δ-Pu, and ε-Pu.

δ-Pu (T = 650 K) ε-Pu (T = 850 K)

Method Va BS β Va BS β

Theory 24.97 43.0 93.9 23.82 36.2 111.9
Experiment 24.89 23.7 −26 24.29 23.0 110

not reproduce the negative value for δ-Pu. These discrepancies may in part be ascribable to
the phase coexistence of δ-Pu and ε-Pu.

To give further support for the present calculation, the 300 K equations of state, calculated
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by utilizing the antiferromagnetic total energies, for fcc Pu and bcc Pu are compared with the
experimental results in figure 3. Note that bcc Pu is indeed appropriate as a model for the
higher-pressure phase of Pu, as pointed out by Söderlind [4].
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Figure 3. The 300 K equation of state of Pu. The solid and dashed lines represent results
calculated using the antiferromagnetic fcc configuration and the antiferromagnetic bcc config-
uration respectively. The open circles represents the experimental values for δ-Pu given by Roof [17]
and the filled circles represent the recent experimental values for α-Pu given by Dabos-Seignon
et al [18].

In summary, we have calculated the equilibrium atomic volumes, the adiabatic bulk
moduli, and the volume thermal expansion coefficients of δ-Pu (computing at 650 K) and
ε-Pu (computing at 850 K), utilizing the 0 K antiferromagnetic total energies calculated with
full-potential LAPW methods in conjunction with the newly developed classical mean-field
statistics. The antiferromagnetic states are found to be energy preferable for both the fcc
and the bcc phases. For the first time, an ab initio thermal calculation within the framework
of the conventional density functional theory has given calculated atomic volumes for δ-Pu
and ε-Pu: these are, respectively, 24.97 Å3 and 23.82 Å3, which are very comparable with
the corresponding experimental values of 24.89 Å3 and 24.29 Å3. Therefore, the absence
of ferromagnetism in experiments can be explained readily in terms of the antiferromagnetic
orderings.
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and encouragement during the progress of this work. This work was supported by the National
PAN-DENG Project (Grant No 95-YU-41).
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